Telomeric Trans-Silencing in Drosophila melanogaster: Tissue Specificity, Development and Functional Interactions between Non-Homologous Telomeres

نویسندگان

  • Thibaut Josse
  • Corinne Maurel-Zaffran
  • Augustin de Vanssay
  • Laure Teysset
  • Anne-Laure Todeschini
  • Valerie Delmarre
  • Nicole Chaminade
  • Dominique Anxolabéhère
  • Stéphane Ronsseray
چکیده

BACKGROUND The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomeric Trans-Silencing: An Epigenetic Repression Combining RNA Silencing and Heterochromatin Formation

The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE s...

متن کامل

Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles.

Transgenes inserted into the telomeric regions of Drosophila melanogaster chromosomes exhibit position effect variegation (PEV), a mosaic silencing characteristic of euchromatic genes brought into juxtaposition with heterochromatin. Telomeric transgenes on the second and third chromosomes are flanked by telomeric associated sequences (TAS), while fourth chromosome telomeric transgenes are most ...

متن کامل

Homology-Dependent Silencing by an Exogenous Sequence in the Drosophila Germline

The study of P transposable element repression in Drosophila melanogaster led to the discovery of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ov...

متن کامل

Cis- and trans-acting influences on telomeric position effect in Drosophila melanogaster detected with a subterminal transgene.

One model of telomeric position effect (TPE) in Drosophila melanogaster proposes that reporter genes in the vicinity of telomeres are repressed by subterminal telomere-associated sequences (TAS) and that variegation of these genes is the result of competition between the repressive effects of TAS and the stimulating effects of promoters in the terminal HeT-A transposon array. The data presented...

متن کامل

Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein.

Rap1p binds to silencer elements and telomeric repeats in yeast, where it appears to initiate silencing by recruiting Sir3p and Sir4p to the chromosome through interactions with its carboxy-terminal domain. Sir3p and Sir4p interact in vitro with histones H3 and H4 and are likely to be structural components of silent chromatin. We show that targeting of these Sir proteins to the chromosome is su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008